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In this study, a nonlinear time-varying dynamic model is proposed to predict

modulation sidebands of planetary gear sets. This discrete dynamic model includes

periodically time-varying gear mesh stiffnesses and the nonlinearities associated with

tooth separations. The model uses forms of gear mesh interface excitations that are

predict dynamic forces at all sun-planet and ring-planet gear meshes. The predicted

gear mesh force spectra are shown to exhibit well-defined modulation sidebands at

frequencies associated with the rotational speeds of gears relative to the planet carrier.

This model is further combined with a previously developed model that accounts for

amplitude modulations due to rotation of the carrier to predict acceleration spectra at a

fixed position in the planetary transmission housing. Individual contributions of each

gear error in the form of amplitude and frequency modulations are illustrated through

an example analysis. Comparisons are made to measured spectra to demonstrate the

capability of the model in predicting the sidebands of a planetary gear set with gear

manufacturing errors and a rotating carrier.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Vibration and noise spectra from planetary gearboxes and transmissions often exhibit components at distinct
frequencies around the gear mesh (tooth passing) frequency and its higher harmonics. The origin of a subset of these
sideband components was proposed to be associated with the rotation of the planet carrier that causes amplitude
modulations of the dynamic forces of the gear meshes that rotate with the carrier [1–3]. A recent study by these authors
provided an analytical framework for predicting the amplitude modulation sidebands of this kind [4]. This model showed
that the amplitude modulations (AM) of an acceleration spectrum due to rotation of the carrier are defined by (i) the
number of planets in the gear set, (ii) planet spacing angles around the sun gear, and (iii) number of teeth of gear
components. These parameters that define relative phasing relationships among the planet meshes not only impact the
force/vibration cancellation and neutralization schemes that are studied widely [5,6], but also define the frequencies and
amplitudes of certain sidebands on vibration spectra. Based on their simplified model that assumes that the dynamic gear
mesh forces are known up-front, Inalpolat and Kahraman [4] classified planetary gear sets based on their sideband
behavior in five groups: (1) equally-spaced and in-phase planets, (2) equally-spaced and sequentially phased planets, (3)
unequally-spaced and in-phase planets, (4) unequally-spaced and sequentially phased planets, and (5) unequally spaced
All rights reserved.
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and arbitrarily phased planets. They established rules for sidebands for each category to be produced by the rotation of the
carrier. They also performed experiments with gear sets from different categories to verify these rules.

The measured acceleration spectra presented in Ref. [4] contained additional sideband activity that is not possible to
describe solely by AM caused by the rotation of the carrier. The cause of these additional sidebands can be attributable to
certain manufacturing errors of the gears. Chaari et al. [7] developed a discrete dynamic model of a planetary gear set to
predict the influence of such errors in the form of gear run-out (eccentricity) on the dynamic gear mesh forces due to
changes to the gear motion transmission error excitations. Another potential cause for planetary gear set sidebands was
suggested to be the unequal planet load sharing that is mostly impacted by the errors of the planet carrier. In one such
study, Mark and Hines [8] predicted the effect of unequal planet load sharing due to a crack on the carrier planet posts on
the sideband distributions.

Most of the above studies focused on AM effects. Published studies on frequency modulations (FM) did not consider
planetary gear sets [9–11]. They focused on analytical treatment of FM of a class of oscillators, which can be representative
of a single gear pair. Randall [9], and Sweeney and Randall [10] qualitatively explained some of the possible sources of gear
signal modulations for parallel-axis gears by performing simplified simulations. They presented possible effects of
manufacturing errors on the resultant vibration spectra via amplitude and phase modulations. In another paper,
Blankenship and Singh [11] studied both amplitude and angle modulations of a damped oscillator analytically and
developed solution methodologies for the governing equations. Besides these studies, there are a variety of works that deal
with sidebands in the wider context of planetary gear vibrations [12–19]. The same is true for studies on planetary
vibration condition monitoring for diagnostics purposes [19–21].

This study aims at expanding on the previous work presented in Ref. [4] by (i) providing a nonlinear time-varying model
of a planetary gear set to predict dynamic gear mesh forces, (ii) formulating modulated gear mesh stiffness and gear
transmission error excitations due to certain gear manufacturing errors, and (iii) combining the dynamic model with the
AM formulation proposed for carrier rotation [4]. This unified discrete dynamic model is intended to include both AM and
FM due to gear manufacturing errors as well as AM due to the rotation of the carrier to seek a fundamental understanding
of mechanisms of modulation sidebands in planetary gear sets. The model will be formulated in a general way to handle a
planetary gear set with any number of planets that are spaced in any arbitrary positions such that all five categories of gear
sets specified in Ref. [4] can be handled dynamically. The model will be used to simulate an example planetary gear set to
study the individual contributions of amplitude and frequency modulations due to various errors and to arrive at rules in
identifying them on a given vibration or noise spectrum. At the end, the model predictions will be compared with a
measured vibration spectrum from a planetary gearbox to demonstrate the effectiveness of the model in predicting
sidebands of a planetary gear set.

The influences of unequal planet load sharing [22] as well as elastic deformations of gear bodies on modulation
sidebands will not be included in this study and the flexibilities will be kept limited to the gear meshes and radial bearings.
The model will focus primarily on simple planetary gear sets (each planet meshing with the same sun and ring gears).
However, the same methodology can be applied to other kinematic forms of planetary gear sets such as double-planet gear
sets, compound (multistage) planetary gear sets and complex-compound planetary gear sets [23,24]. In a recent study,
certain operating conditions such as fluctuation of the input torque to the planetary gear set were stated to cause additional
sidebands [25,26]. This study focuses only on the sideband behavior at steady-state operating conditions. Any additional
modulations due to time-varying speed or torque were not included in this study, with the premise that a steady-state
baseline must be established before recognizing signs of these added complexities on the vibration spectra.

2. Prediction of modulation sidebands under dynamic conditions

The modeling methodology employed here consists of two major steps. The first step is to predict the dynamic gear
mesh forces by using a discrete dynamic model that includes various forms of typical manufacturing errors. As these errors
modulate the excitations used for the dynamic model, the predicted dynamic mesh force spectra should be expected to
contain sideband orders associated with these errors. In case of a gear set with a stationary carrier, the measured vibration
spectra on the housing as well as the noise around the gearbox will have the same spectral characteristics as the dynamic
mesh forces. However, when the planet carrier rotates, planets move with it relative to any fixed measurement location,
causing additional amplitude modulations [4]. Accordingly, the second step in this methodology is to apply the amplitude
modulation formulation of Ref. [4] to the dynamic gear mesh forces predicted by the dynamic model to capture the
combined influence of manufacturing errors and carrier rotation on the modulation sidebands of the planetary gear sets.

2.1. Dynamic model of planetary gear set

A discrete, two-dimensional time-varying dynamic model is considered here. This model is based on an earlier model
[27] that was developed to study planet load sharing characteristics of a simple planetary gear set under dynamic
conditions. This model will be expanded here to include the influences of various gear and carrier related manufacturing
errors. The model considers a simple planetary gear set with N planets (typically N=3–7 for most automotive and aerospace
applications) that are positioned in any angular spacing allowed by the geometric constraints. As N and the spacing angles
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of planets ci, (iA[1,N] with c1=0) together with the number of teeth of gears were shown to define amplitude modulations
due to carrier rotation [4], it is essential that the dynamic model should have the capability to model a gear set with any
combinations of the same parameters.

The dynamic model of the planetary gear set shown in Fig. 1 allows each gear and carrier body j to translate in x and y

directions, denoted by xj and yj, and rotate about its axis that remains normal to the transverse plane of the gears. The
fluctuations of the same member about its nominal rigid-body rotation are defined by yj. Each planet (pi) is in mesh with
the sun gear (s) and the ring (internal) gear (r) while it is supported through its axis by a bearing held by the carrier (c). In
Fig. 1, only one of the N planet branches located at an arbitrary planet position angle ci is shown. In this figure, yjc (j=s,r,pi)
are the nominal kinematic rotations and ej represents the initial position angle of the run-out (eccentricity) vector of each
gear j. Here, es and er are both defined from the horizontal x-axis while epi is defined from the radial axis along the centers of
the sun gear (O) and planet pi located at an angle ci.

A gear pair (external or internal) sub-system and a pinion–carrier pair sub-system, as shown in Fig. 2, will be formulated
first before assembling the dynamic model of the entire gear set. Fig. 2(a) and (b) show dynamic models of external (sun-
planet pi) and internal (ring-planet pi) gear pairs, respectively, with planet pi positioned at angle ci. Gears are modeled as
rigid disks with masses ms, mr and mp, and mass moments of inertia Js, Jr and Jp. The gear mesh interfaces are represented by
(i) periodically time-varying gear mesh stiffnesses kspi(t) and krpi(t) to account for the fluctuation of the stiffness with gear
rotations [27], (ii) constant gear mesh damping elements csp and crp that are assumed to be the same for each s–pi and r–pi

mesh, and (iii) periodic gear transmission error displacement excitations espi(t) and erpi(t) [27].
Defining uj=rjyj (j=s,r) and upi=rpiypi as the coordinates in place of yj and ypi where rj and rpi are the radii of the gears, and

further defining the dynamic gear mesh forces as

FjpiðtÞ ¼ cjp _pjpiðtÞ þ kjpiðtÞpjpiðtÞ; (1a)

where pjpi(t) is the relative gear mesh displacement given as

pjpiðtÞ ¼ ½yjðtÞ � ypiðtÞ�coscji � ½xjðtÞ � xpiðtÞ�sincji � ujðtÞ � djupiðtÞ � ejpiðtÞ þ EjpiðtÞ � EpijðtÞ (1b)

equations of motion of a gear pair sub-system are written as

mj €yjðtÞ þ hjpi coscjiFjpiðtÞ ¼ 0; (2a)

mj €xjðtÞ � hjpi sincjiFjpiðtÞ ¼ 0; (2b)

Jj

r2
j

€ujðtÞ � hjpiFjpiðtÞ ¼
Tj

Nrj
; (2c)

mp €ypiðtÞ � hjpi coscjiFjpiðtÞ ¼ 0; (2d)
Fig. 1. Components and basic geometric parameters of a simple planetary gear set (only one planet branch is shown).
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mp €xpiðtÞ þ hjpi sincjiFjpiðtÞ ¼ 0; (2e)

Jp

r2
p

€upiðtÞ � djhjpiFjpiðtÞ ¼ 0: (2f)

In these equations, dj=1 for j=s (external s–pi gear pair) and dj=�1 for j=r (internal r–pi gear pair) and cji=ci�djaj, as
shown in Fig. 1, where aj is the transverse pressure angle of the gears. The external torque Tj in Eq. (2c) represents the
torque externally applied on the sun or the ring gear. An additional function hjpi is applied as a multiplier to Fjpi(t) to
account for any nonlinear effects that might take place due to tooth separations. Here, hjpi=1 when the gear teeth are in
contact (i.e. pjpi(t)Z0) and hjpi=0 when gears loose contact (i.e. pjpi(t)o0). Also included in Eqs. (1a) and (1b) are Ejpi(t) and
Epij(t) to represent manufacturing errors of gear j relative the planet pi and manufacturing errors of planet pi relative to gear
j, respectively. These errors will be defined explicitly in the next section.

Eqs. (2a)–(2f) can be written in matrix form to obtain sub-matrices associated with the gear j-planet pi pair as

Mjpi ¼
mj 0

0 mpi

" #
; (3a)

Cjpi ¼

cð11Þ
jpi cð12Þ

jpi

cð12Þ
jpi cð22Þ

jpi

2
4

3
5; (3b)

Kjpi ¼

kð11Þ
jpi kð12Þ

jpi

kð12Þ
jpi kð22Þ

jpi

2
4

3
5 (3c)

with displacement and force vectors

Q jpi ¼
qj

qpi

( )
; (3d)

Fjpi ¼
f j

0

( )
; (3e)
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FjpiðtÞ ¼
fð1Þjpi

fð2Þjpi

8<
:

9=
;: (3f)

Meanwhile, equations of motion for the carrier-planet pi sub-system, which is shown in Fig. 2(c) with uc=rcyc as the
rotational carrier coordinate (rc is the radius of the circle passing through the planet centers), are defined as

mc €ycðtÞ þ cy½ _ycðtÞ � _ypiðtÞ � cosci
_ucðtÞ� þ ky½ycðtÞ � ypiðtÞ � cosciucðtÞ� ¼ 0; (4a)

mc €xcðtÞ þ cx½ _xcðtÞ � _xpiðtÞ þ sinci
_ucðtÞ� þ kx½xcðtÞ � xpiðtÞ þ sinciucðtÞ� ¼ 0; (4b)

Jc

r2
c

€ucðtÞ þ cx½ _xcðtÞ � _xpiðtÞ þ sinci
_ucðtÞ�sinci � cy½ _ycðtÞ � _ypiðtÞ � cosci

_ucðtÞ�cosci

þ kx½xcðtÞ � xpiðtÞ þ sinciucðtÞ�sinci � ky½ycðtÞ � ypiðtÞ � cosciucðtÞ�cosci

¼
Tc

Nrc
; (4c)

mp €ypiðtÞ � cy½ _ycðtÞ � _ypiðtÞ � cosci
_ucðtÞ� � ky½ycðtÞ � ypiðtÞ � cosciucðtÞ� ¼ 0; (4d)

mp €xpiðtÞ � cx½ _xcðtÞ � _xpiðtÞ þ sinci
_ucðtÞ� � kx½xcðtÞ � xpiðtÞ þ sinciucðtÞ� ¼ 0: (4e)

Here, Tc is the external torque applied to the carrier, and mc and Jc are the mass and the polar mass moment of inertia of
the carrier, respectively. In this model, the planet pin-bearing assembly is represented by linear springs kx and ky, and
dampers cx and cy as illustrated in Fig. 2(c). It is noted that above equations are not a function of planet rotation upi=rpypi

since planet pi can rotate freely relative to the carrier. Eqs. (4a)–(4e) are written in matrix form to define

Mcpi ¼
mc 0

0 mpi

" #
; (5a)

Cpi ¼

cð11Þ
cpi cð12Þ

cpi

cð12Þ
cpi cð22Þ

cpi

2
4

3
5; (5b)

Kcpi ¼

kð11Þ
cpi kð12Þ

cpi

kð12Þ
cpi kð22Þ

cpi

2
4

3
5; (5c)

Q cpi ¼
qc

qpi

( )
; (5d)

Fcpi ¼
f c

0

( )
: (5e)

With the matrices of every sub-system available, the overall equations of motion of an N-planet planetary gear set with
planets spaced at ci (iA[1,N]) are constructed systematically as

M €Q ðtÞ þ ½Cþ Cb�
_Q ðtÞ þ ½KðtÞ þ Kb�Q ðtÞ ¼ F þ FðtÞ; (6a)

where

Q ¼ qc qr qs qp1; . . . ;qpN

h iT
; (6b)

M ¼ Diag Mc Mr Ms Mp1; . . . ;MpN

h i
; (6c)

C ¼

PN
i¼1 cð11Þ

cpi 0 0 cð12Þ
cp1 � � � cð12Þ

cpNPN
i¼1 cð11Þ

rpi 0 �cð12Þ
rp1 � � � �cð12Þ

rpNPN
i¼1 cð11Þ

spi cð12Þ
sp1 � � � cð12Þ

spN

cð22Þ
cp1 þ cð22Þ

rp1 þ cð22Þ
sp1 � � � 0

& ^

symmetric cð22Þ
cpN þ cð22Þ

rpN þ cð22Þ
spN

2
6666666666664

3
7777777777775
; (6d)
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KðtÞ ¼

PN
i¼1 kð11Þ

cpi 0 0 kð12Þ
cp1 � � � kð12Þ

cpNPN
i¼1 kð11Þ

rpi 0 �kð12Þ
rp1 � � � �kð12Þ

rpNPN
i¼1 kð11Þ

spi kð12Þ
sp1 � � � kð12Þ

spN

kð22Þ
cp1 þ kð22Þ

rp1 þ kð22Þ
sp1 � � � 0

& ^

symmetric kð22Þ
cpN þ kð22Þ

rpN þ kð22Þ
spN

2
6666666666664

3
7777777777775
: (6e)

In Eq. (6e), the elements of K(t) are periodically time-varying due to the mesh stiffnesses kspi(t) and krpi(t) (iA[1,N]).
The Cb and Kb matrices in Eq. (6a) represent the bearing damping and stiffness matrices that are assumed to be diagonal

matrices as shown below (j=s,r,c):

Cb ¼ Diag cbc cbr cbs 0 . . . 0
� �

; (7a)

Kb ¼ Diag kbc kbr kbs 0 . . . 0
h i

: (7b)

Here, sub-matrices cbj=Diag[cxj cyj cuj] and kbj=Diag[kxj kyj kuj] are the diagonal damping and stiffness matrices of the
bearing supporting central member j (j=s,r,c). If any central member j is allowed to float radially (i.e. not supported
externally), then kxjEkyjE0. If a central member is held stationary, then kuj is assigned a large value representing the
stiffness of the holding structure.

The forcing term at the right-hand side of Eq. (6a) consists of a mean force vector F̄ and an alternating (time-varying)
force vector F(t), which are defined as

F ¼ N f c f r f s 0 . . . 0
h iT

; (8a)

FðtÞ ¼

0PN
i¼1 fð1ÞrpiPN
i¼1 fð1Þspi

fð2Þsp1 � fð2Þrp1

^

fð2ÞspN � fð2ÞrpN

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

: (8b)

Here F(t) contains all of the external displacement excitations espi(t) and erpi(t) at the gear mesh frequency as well as the
excitations Espi(t), Epis(t), Erpi(t) and Epir(t) at the relative gear rotational frequencies.

2.2. Formulation of modulations of the excitations due to manufacturing errors

The error functions Espi(t), Epis(t), Erpi(t) and Epir(t) given in Eq. (1b) as part of the relative gear mesh displacements
represent errors associated with rotational frequencies of gears relative to the carrier. Such errors include gear
eccentricities, pitch-line run-out errors, tooth spacing and indexing errors, which are approximated here to harmonic forms
for both the s–pi and r–pi meshes as

EspiðtÞ ¼ Essin
om

Zs
t þ es �csi

� �
; (9a)

EpisðtÞ ¼ Episin
om

Zp
t þ epi � as

� �
; (9b)

ErpiðtÞ ¼ Ersin
om

Zr
t þ er þ cri

� �
; (9c)

EpirðtÞ ¼ Episin
om

Zp
t þ epi þ ar

� �
: (9d)

Here, the gear mesh frequency is defined as om=Zs|os�oc|=Zr|or�oc|=Zp|op�oc|, where oj and Zj (j=r,s,p) are absolute
nominal angular velocity and number of teeth of gear j and oc is the absolute nominal angular velocity of the
carrier. Accordingly, the excitations Epis(t) and Epir(t) of pinion pi are at a frequency om/Zp that is equal to the rotational
velocity of pi relative to c. Similarly, Espi(t) and Erpi(t) are at frequencies om/Zs and om/Zr, respectively, representing the
rotational velocities of the sun and ring gears relative to the carrier. Coefficients Es, Er and Epi are the amplitudes of these
errors. The additional phase angles es, er and epi illustrated in Fig. 1 define the initial orientation of them, as previously
discussed.
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In the absence of errors defined in Eqs. (9a)–(9d), gear transmission error excitations defined as a part of the gear mesh
interfaces shown in Fig. 2(a) and (b) are given in periodic form as [27]

espiðtÞ ¼
XL

‘¼1

eð‘Þsp sin½‘omt þ ‘Zsci þ fð‘Þsp �; (10a)

erpiðtÞ ¼
XL

‘¼1

eð‘Þrp sin½‘omt þ ‘Zrci þ ‘gsr þ fð‘Þrp � (10b)

where gsr is the phase angle between espi(t) and erpi(t).
If the dynamic model proposed in the previous section were to be exercised with excitations as defined in Eqs.

(9a)–(10b) as it was done in Ref. [27], one would observe little or no modulation sidebands in dynamic gear mesh forces
Fspi(t) and Frpi(t) as there is no apparent interaction between the two groups of excitations. In reality, however, the presence
of errors defined by Eqs. (9a)–(9d) causes espi(t) and erpi(t) to be amplitude and frequency modulated, forming the basis for
sidebands due to manufacturing errors of gears. In presence of errors defined in Eqs. (9a)–(9d), a quasi-static deformable
body contact analysis of a typical automotive external gear pair using a gear load distribution model [28] shows that the
peak-to-peak amplitude of espi(t) might experience up to 4–6% variation due to Espi(t) and Epis(t) even with modest error
magnitudes of Es or Epi (say 20mm or less) depending on the instantaneous direction of the error of one gear with respect to
the mating gear. In addition to this amplitude modulation, a frequency modulation is also resulted since the variation in
effective center distance caused by these errors modulates the tooth meshing period. These indicate that Eqs. (10a)
and(10b) must be modified in the presence of the gear errors defined in Eqs. (9a)–(9d).

In order to show the impact of Espi(t), Epis(t), Erpi(t) and Epir(t) on espi(t) and erpi(t), we consider only the fundamental
harmonic of espi(t) and erpi(t) (i.e. L=1 in Eqs. (10a) and (10b) with esp

(1)=esp, fsp
(1)=fsp, erp

(1)=erp and frp
(1)=frp). However,

the below formulation can easily be expanded to include the higher harmonics as well. The excitations espi(t) and erpi(t)
with amplitude and frequency modulations are written as

espiðtÞ ¼ AspiðtÞespsin½BspiðtÞomt þ Zsci þ fsp�; (11a)

AspiðtÞ ¼ 1þ bs sin
om

Zs
t þ fbsi

� �
þ bpi sin

om

Zp
t þfbpi

� �
; (11b)

BspiðtÞ ¼ 1þ b̂s sin
om

Zs
t þ f̂b̂si

� �
þ b̂pi sin

om

Zp
t þ f̂b̂pi

� �
(11c)

and

erpiðtÞ ¼ ArpiðtÞerp sin½BrpiðtÞomt þ Zrci þ gsr þfrp�; (12a)
Fig. 3. Schematic illustration of a planetary gear set with four planets and an accelerometer mounted on the stationary ring gear.
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ArpiðtÞ ¼ 1þ br sin
om

Zr
t þfbri

� �
þ Wpi sin

om

Zp
t þ fWpi þ p

� �
; (12b)

BrpiðtÞ ¼ 1þ b̂r sin
om

Zr
t þ f̂b̂r

� �
þ Ŵpi sin

om

Zp
t þ f̂Ŵpi

þ p
� �

: (12c)
Fig. 4. Predicted (a) Fsp1(o) and (b) Frp1(o) spectra for the example planetary gear set under the influence of AM due to planet-1 run-out error with

bp1=0.034, fbp1=3p/2, Wp1=0.033, fWp1=p/2, kp1=0.055, fkp1=3p/2, tp1=0.049 and ftp1=p/2.

Table 1
Basic design parameters of the example gear train.

Parameter Sun Planet Ring

Number of teeth 80 30 140

Module (mm) 1.8 1.8 1.8

Pressure angle (deg) 22.5 22.5 22.5

Face width (mm) 30 30 30

Root diameter (mm) 131 43.4 237.2

Outside diameter (mm) 139.2 50 229.6

Pin circle diameter (mm) 78

Tooth thickness (mm) 2.83 2.85 2.97

Operating center dis. (mm) 92.1 92.1
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Here, dimensionless coefficients bs and bpi represent the amplitude modulation of the fundamental harmonic of espi(t)
due to the errors of the sun gear and planet pi, and fbsi and fbpi are the phase angles for the same gears, as defined by the
initial position angles es and epi. Parameters br and fbri define the amplitude and the phase angle of the amplitude
modulation of erpi(t) due to the error of the ring gear. Parameters Wpi and fWpi define the amplitude and the phase angle of
the amplitude modulation of erpi(t) due to the error of the planet gear. Here, it is important to note that the amplitude
modulation coefficients (bpi and Wpi) are usually different for the s–pi and r–pi meshes involving the same planet pi for the
same planet run-out amount. Similarly, amplitude coefficients, b̂s, b̂r , b̂pi and Ŵpi and the phase angles f̂b̂si

, f̂b̂ri
, f̂b̂pi

and
f̂Ŵpi

define the frequency modulations of espi(t) and erpi(t).
All these modulation parameters can be defined up-front by simulating the loaded gear contacts under quasi-static

conditions [28]. In Eqs. (11a)–(12c), the gear mesh-frequency excitations espi(t) and erpi(t) are both amplitude and frequency
modulated by errors at rotational frequencies of gear s, r and pi relative to the planet carrier. These rotational frequencies
om/Zs, om/Zr and om/Zp are typically distinct so that sidebands caused by each on the resultant Fspi(t) and Frpi(t) spectra
should correspond to a different set of frequencies, as it will be demonstrated later.

The same modulation mechanism affects the periodically varying gear mesh stiffness functions of the s–pi and r–pi

meshes in the same way. In their unmodulated form, these functions are defined below as

kspiðtÞ ¼ kspf1þ
XL

‘¼1

kð‘Þsp sin½‘omt þ ‘Zsci þ ‘Gþ fð‘Þsp �g; (13a)

krpiðtÞ ¼ krpf1þ
XL

‘¼1

kð‘Þrp sin½‘omt þ ‘Zrci þ ‘Gþ ‘gsr þ fð‘Þrp �g: (13b)

Here, k̄sp and k̄rp are the mean mesh stiffness values computed at a given torque value, ksp
(‘) and krp

(‘) are the
dimensionless ‘th harmonic amplitudes, and G is the phase angle between espi(t) and kspi(t) (and also between erpi(t) and
krpi(t)). Considering only the fundamental harmonic terms (L=1) for demonstration purposes and modulating the
amplitudes and the mesh frequency the same way as in Eqs. (11a)–(12c), one obtains

kspiðtÞ ¼ ksp þ CspiðtÞksp sin½DspiðtÞomt þ Zsci þ Gþ fsp�; (14a)

CspiðtÞ ¼ 1þ ks sin
om

Zs
t þfksi

� �
þ kpi sin

om

Zp
t þ fkpi

� �
; (14b)

DspiðtÞ ¼ 1þ k̂s sin
om

Zs
t þ f̂k̂si

� �
þ k̂pi sin

om

Zp
t þ f̂k̂pi

� �
(14c)

and

krpiðtÞ ¼ krp þ CrpiðtÞkrp sin½DrpiðtÞomt þ Zrci þ gsr þ Gþfrp�; (15a)
Fig. 5. Predicted A(o) spectra for the example planetary gear set with a rotating carrier under the influence of AM due to planet-1 run-out error with

bp1=0.034, fbp1=3p/2, Wp1=0.033, fWp1=p/2, kp1=0.055, fkp1=3p/2, tp1=0.049 and ftp1=p/2.
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CrpiðtÞ ¼ 1þ kr sin
om

Zr
t þfkri

� �
þ tpi sin

om

Zp
t þftpi þ p

� �
; (15b)

DrpiðtÞ ¼ 1þ k̂r sin
om

Zr
t þ f̂k̂ri

� �
þ t̂pi sin

om

Zp
t þ f̂t̂pi þ p

� �
: (15c)

2.3. Formulation of modulations due to rotating carrier

With the modulated excitations defined by Eqs. (11a)–(15c), the equations of motion (6a) of the nonlinear time-varying
planetary gear system are solved by using direct numerical integration technique to determine the unknown vector of
displacement time histories Q(t), from which the dynamic gear mesh forces Fspi(t) and Frpi(t) can be computed according to
Eq. (1a). As it will be demonstrated in the next section, these gear mesh forces exhibit sideband activity associated with the
once-per-revolution errors of the gears. If the power flow configuration is such that the carrier is held stationary (i.e. sun
and ring gears serve as input and output members), then any vibration or noise spectra measured in a fixed location in the
vicinity of the gear set will have the same sideband structure. As described in Ref. [4], another layer of modulations take
place when the carrier is rotating, as the influence of gear mesh forces (now rotating with the carrier) are amplitude
Fig. 6. Predicted (a) Fsp1(o) and (b) Frp1(o) spectra for the example planetary gear set under the influence of AM due to sun gear run-out error with

bsi=0.0338 (iA[1,4]), fbs1=p/2, fbs2=0, fbs3=3p/2, fbs4=p and ksi=0.0547 (iA[1,4]), fks1=p/2, fks2=0, fks3=3p/2 and fks4=p.
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modulated viewed from a fixed measurement point. The predicted Fspi(t) and Frpi(t) with or without the other gear errors
can be used as input in this earlier formulation [4] to predict the resultant spectra at a fixed point for the rotating carrier
case. Referring to Ref. [4] for the details, a brief summary of this formulation will be provided here for completeness
purposes.

Consider the same planetary gear set with N planets positioned at angles ci (iA[1,N]) and with rotating carrier c and the
sun gear s (fixed: ring gear r). For a complete revolution of the carrier, a transducer positioned on the housing shown in
Fig. 3 experiences the disturbances from all 2N planet meshes in sequence. As the force transmission path between the
meshes of planet pi and the fixed transducer location varies in time as the carrier rotates, the influence of each planet on
the transducer was limited in Ref. [4] to a duration of Tc/N, where Tc=2p/oc is the rotational period of the carrier. This
gradually increasing and then decaying dominance of the forces of planet pi within a Tc/N time period, was approximated
by weighting function in the form of a Hanning window w(t)=0.5�0.5 cos(2pNt/Tc) as

wiðtÞ ¼ w t �
ci

2p Tc

� �X1
n¼1

u t �
ðn� 1ÞN þ i� 1

N

� �
Tc

� �
� u t �

ðn� 1ÞN þ i

N

� �
Tc

� �� 	
; (16)

where ci is the position angle of planet pi. In this equation, terms u(t�a) are unit step functions u(t�a)=1 for t4a and
u(t�a)=0 for toa) that ensure the influence of planet pi on the transducer lasts only for a period of Tc/N. The summation
over n ensures the periodicity of the function.

The acceleration signal at the transducer location caused by dynamic forces Fspi(t) and Frpi(t) of the meshes of planet pi

mesh are then defined as

aiðtÞ ¼ SswiðtÞFspiðtÞ þ SrwiðtÞFrpiðtÞ; (17)

where Ss are Sr constants facilitated to establish the relation between the gear mesh forces and the resultant acceleration at
a given rotational position. The total acceleration signal a(t) is given as

aðtÞ ¼
XN

i¼1

aiðtÞ (18a)

with the corresponding frequency spectrum

AðoÞ ¼ j
Z 1
�1

aðtÞe�iot dtj: (18b)

For the case of non-rotating carrier, all wi(t)=1 with different Ss are Sr values for each planet depending on their distance
from the transducer location.
Fig. 7. Predicted AðoÞ spectra for the example planetary gear set with a rotating carrier under the influence of AM due to sun gear run-out error with

bsi=0.0338 (iA[1,4]), fbs1=p/2, fbs2=0, fbs3=3p/2, fbs4=p and ksi=0.0547 (iA[1,4]), fks1=p/2, fks2=0, fks3=3p/2 and fks4=p.



ARTICLE IN PRESS

M. Inalpolat, A. Kahraman / Journal of Sound and Vibration 329 (2010) 371–393382
3. Example analysis of modulation sidebands of a planetary gear set with errors

In this section, an example planetary gear set is used to demonstrate different modulation mechanisms for systems with
and without a rotating carrier under different dynamic conditions. The first step in this simulation is to determine the gear
and carrier inertias and masses as well as bearing stiffnesses. The gear mesh interface parameters including the excitation
terms defined in Eqs. (11a)–(15c) are then predicted under quasi-static conditions using a gear load distribution model
similar to the one proposed in Ref. [28]. With these parameters and operating speed and load conditions in place, the
system equations defined by Eqs. (6a)–(6e) are constructed and solved by using direct numerical integration to find the
dynamic gear mesh forces defined in Eq. (1a). Finally, these forces are implemented in Section 2.3 to induce the amplitude
modulations due to the rotation of the planet carrier.

Here, a 4-planet planetary gear set is chosen as the example system having gears with tooth counts Zr=140, Zs=80 and
Zp=30. Gear mesh parameters of k̄sp=5.2(10)8 N/m, ksp

(1)=17.5(10)6 N/m, k̄rp=5.5(10)8 N/m, krp
(1)=18.6(10)6 N/m, esp

(1)=0.5mm
and erp

(1)=0.16mm are used for harmonic forms of the mesh stiffness and transmission error excitations. Other parameters
of this gear set that are relevant to the dynamic model are listed in Table 1. Here, the planets are equally spaced
(ci=2p(i�1)/4) and planet meshes are in-phase type (Zs/N=integer and Zr/N=integer) such that this gear set falls into the
case (i) category according to the classification of planetary gear sets based on their sideband behavior proposed in Ref. [4].
Planetary gear sets in this category were shown to have a relatively simple sideband activity due to the carrier rotation. This
Fig. 8. Predicted (a) Fsp1(o) and (b) Frp1(o) spectra for the example planetary gear set under the influence of AM due to planet-1, sun and ring gear run-

out errors. bri=0.0332 (iA[1,4]), fbr1=3p/2, fbr2=0, fbr3=p/2, fbr4=p, kri=0.0491 (i=1,y,4), fkr1=3p/2, fkr2=0, fkr3=p/2, and fkr4=p, and sun and planet

related parameters are as in Figs. 4 and 6.
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will allow a more clear demonstration of the sidebands due to manufacturing errors with limited added complexity due to
carrier rotations, while the model is capable of handling any of five categories proposed in Ref. [4]. For the same reason, AM
and FM modulations will be introduced separately with one gear error at a time. Both dynamic gear mesh force spectra and
the vibration spectra at a fixed point will be predicted to identify the impact of the rotating carrier. Finally, simulations will
be performed at different speeds (frequencies) representing off-resonance and near resonance conditions to highlight the
impact of dynamic behavior on the planetary sideband activity.
3.1. Planetary gear set modulations under off-resonance conditions

The undamped natural modes of the corresponding linear time-invariant system can be determined by setting C=0 and
Cb=0 in Eq. (6a), considering constant gear mesh stiffnesses with kspi(t)=k̄sp and krpi(t)=k̄rp in Eqs. (14a) and (15a), and
solving the corresponding eigenvalue problem. With the numerical values of the parameters defined above and in Table 1,
first five natural frequencies of this example gear set are determined as 982, 2484, 2629, 5088 and 5101 Hz, excluding the
rigid-body mode at 0 Hz. Here, some of these modes are repeated planet modes where planets displace in sequentially-
phased manner while central members are motionless. The rest are in-phase, overall modes where each planet has the
same motion relative to central members [5,6]. First, the example planetary gear set is simulated at a lower mesh frequency
of 400 Hz (os=49.5 rad/s) resulting in om=2513 rad/s in this kinematic configuration with a stationary ring gear such that a
typical off-resonance condition exists. Under these conditions, the gear set acts as a linear time-varying system with no
tooth separations and nonlinear behavior. All of the analyses are carried out at a sun torque value of Ts=500 N m. This
corresponds to about 42% of the rated maximum torque of this planetary gear set in an actual automatic transmission.

First, a planet run-out error of Ep1=20mm at ep1=0 is applied to planet p1 while the other Epi=0 and Es=Er=0. The
corresponding amplitude modulation parameters in Eqs. (11a)–(12c), (14a)–(15c) are defined using the gear load
distribution model [28] as bp1=0.034, fbp1=3p/2, Wp1=0.033, fWp1=p/2, kp1=0.055, fkp1=3p/2, tp1=0.049 and ftp1=p/2 with
all other modulation coefficients are set to zero. Predicted dynamic mesh force spectra Fsp1(o) and Frp1(o) at s–p1 and r–p1
meshes are shown in Fig. 4. In these figures, the x-axis represents the output side gear mesh orders obtained by
normalizing the frequency scale by the rotational output (carrier) frequency. With this, the fundamental gear mesh order is
Hm=Zr=140. Two almost symmetric sidebands are evident at both sides of Hm at orders of Hm7Hp/c where Hp/c=Zr/Zp=4.69.
Dynamic mesh force spectra for the meshes of planets p2 to p4 are also very similar to those shown in Fig. 4 for the meshes
of the first planet.

With these gear mesh forces, Fspi(t) and Frpi(t) (iA[1,N]), predicted with the sidebands associated with Ep1, the procedure
outlined in Section 2.3 is applied next to predict the acceleration spectra that would be measured on the stationary ring
gear as illustrated in Fig. 3. Fig. 5 shows the predicted acceleration spectrum A(o) for this case, given Ss=0 and Sr=1 in
Eq. (17). Here, some of the energy of the gear mesh harmonic order of H=Hm=140 is distributed to two sidebands at
H=Hm7N=14074 as a direct result of the amplitude modulation caused by the rotating carrier [4]. As the run-out (or
eccentricity) vector rotates with the planet gear, it has a different phase angle each time the planet enters its windowed
Fig. 9. Predicted A(o) spectra for the example planetary gear set with a rotating carrier under the influence of AM due to planet-1, sun and ring gear run-

out errorsbri=0.0332 (iA[1,4]), fbr1=3p/2, fbr2=0, fbr3=p/2, fbr4=p, kri=0.0491 (i=1,y,4), fkr1=3p/2, fkr2=0, fkr3=p/2, and fkr4=p, and sun and planet

related parameters are as in Figs. 4 and 6.
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region. This causes the force sidebands at orders Hm7Hp/c of Fig. 4 (135.31 and 144.69) to cause new sidebands at Hm7Hp/c

7n (n=integer) while orders Hm7Hp/c disappear. Among them, the sideband orders Hm7Hp/c72 (H=133.31, 137.31, 142.69
and 146.69) are especially large in addition to those at Hm7Hp/c727N (e.g. H=129.31, 141.31, 138.69 and 150.69).

Next, error amplitude of Es=20mm is applied to the sun gear of the same gear set while all Epi=0 and Er=0 at Ts=500 N m.
Considering only the amplitude modulations in Eqs. (11a)–(11c), (14a) and (14b), the dynamic mesh forces are amplitude
modulated due to the modulation parameters bsi=0.0338 (iA[1,4]) with fbs1=p/2, fbs2=0, fbs3=3p/2, fbs4=p and ksi=0.0547
(iA[1,4]) with fks1=p/2, fks2=0, fks3=3p/2, fks4=p. Predicted Fsp1(o) and Frp1(o) for this case are shown in Fig. 6. Sideband
orders at H=138.25 and 141.75 are evident in these force spectra. They correspond to orders H=Hm7Hs/c where Hs/c=Zr/
Zs=1.75. The corresponding acceleration spectrum A(o) is shown in Fig. 7. Here, besides the orders at H=Hm7N=136 and
144, which are due to rotation of the carrier, some additional sidebands appear at H=Hm7Hp/c7n due to the amplitude
modulation of the sidebands shown in Fig. 6. Orders at H=139.25 and 140.75 are of this kind. It is also noted here that,
among these orders, H=Hm7Hs/c717N (e.g. orders 135.25, 136.75, 143.25 and 144.75) have reasonably large amplitudes.

Likewise, a non-zero Er on the ring gear causes Fsp1(o) and Frp1(o) sidebands at orders Hm7Hr/c where Hr/c=1 as ring gear
is fixed in this configuration. The corresponding A(o) spectrum contains some additional sidebands at H=Hm7Hr/c7n.
Figures for the case of ring gear error are not included here since they are qualitatively similar to those for the sun and
planet gear errors. Instead, predictions for a case when Ep1=Es=Er=20 mm (all other Epi=0 and epi=es=er=0) are included here
with all of the corresponding modulation parameters specified above used simultaneously. The resultant mesh force
Fig. 10. Predicted (a) Fsp1(o) and (b) Frp1(o) spectra for the example planetary gear set when only FM are present due to planet-1 run-out with

b̂p1 ¼ Ŵp1 ¼ k̂p1 ¼ t̂p1 ¼ 8:5ð10Þ�5, fb̂p1
¼ 3p=2, fŴp1

¼ p=2, fk̂p1 ¼ 3p=2 and ft̂p1 ¼ p=2.
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spectra shown in Fig. 8 indicate that the sidebands created due to each individual error are linearly superimposed. The
same statement is true for the corresponding A(o) as well, as shown in Fig. 9. Here, all of the sideband groups identified
above for each error, Hm7Hs/c7n, Hm7Hr/c7n and Hm7Hp/c7n (n: integer) coexist. It is also noted here that this A(o)
spectrum can be used to identify any sources of error in a planetary gear set as long as orders Hp/c, Hs/c and Hr/c are distinct.
Only time these orders are not distinct is when Zp=Zs, resulting in Hp/c=Hs/c. In this special case, it would not be possible to
separate the sideband orders caused by sun gear and planet gear errors.

Up to this point in this example analysis, only the amplitude modulations of the excitation functions due to
manufacturing errors were considered. The same procedure will be used next to investigate the impact of the FM
parameters in Eqs. (11a)–(12c), (14a)–(15c), with AM parameters intentionally turned off. For the first case of the planet
gear run-out error of Ep1=20mm with ep1=0, FM parameters are estimated as b̂p1 ¼ Ŵp1 ¼ k̂p1 ¼ t̂p1 ¼ 8:5ð10Þ�5,
fb̂p1

¼ 3p=2, fŴp1
¼ p=2, fk̂p1 ¼ 3p=2, and ft̂p1 ¼ p=2. The resultant Fsp1(o) and Frp1(o) are shown in Fig. 10 for

Ts=500 N m. Instead of creating a single pair of sidebands as it was in the case of AM in Fig. 4, a large number of sidebands
are created by the frequency modulation of the gear mesh excitations. The FM sidebands ultimately appear at orders
Hm7nHp/c. However, in cases where relatively large frequency modulation parameters are used, additional orders show up
possibly at orders Hm7nHp=c7b̂piHm. It is also observed from these two spectra that sidebands with significant amplitudes
Fig. 11. Predicted A(o) spectrum for the example planetary gear set when only FM are present due to planet-1 run-out with

b̂p1 ¼ Ŵp1 ¼ k̂p1 ¼ t̂p1 ¼ 8:5ð10Þ�5, fb̂p1
¼ 3p=2, fŴp1

¼ p=2, fk̂p1 ¼ 3p=2 and ft̂p1 ¼ p=2: (a) a zoomed in view in the vicinity of the fundamental

gear mesh frequency and (b) the same spectrum with a wider frequency range.
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range from H=115–165. The corresponding A(o) spectrum at a fixed transducer location is shown in Fig. 11.
Here, fundamental mesh harmonic order at Hm=140 is split into orders 138 and 142. In Fig. 11(b) that displays the same
spectrum in a wider frequency range, significant sideband orders at Hm7nHp/c7nN appear in addition to the ones at orders
Hm7nHp/c.

Secondly, a sun gear run-out error with Es=20mm starting at the initial position angle of es=01 is introduced to the
system operating at Ts=500 N m. Only the FM parameters (b̂s ¼ k̂s ¼ 3:0ð10Þ�5, iA[1,4], fb̂s1

¼ fk̂s1 ¼ p=2, fb̂s2
¼ fk̂s2 ¼ 0,

fb̂s3
¼ fk̂s3 ¼ 3p=2 and fb̂s4

¼ fk̂s4 ¼ p) are included here in order to demonstrate the sole influence of frequency
modulations. The predicted Fsp1(o) and Frp1(o) are shown in Fig. 12. The FM sidebands typically appear at orders Hm7nHs/c.
Meanwhile, Fig. 13 shows the corresponding A(o) spectrum, exhibiting sidebands in a narrower order range of Hm710,
which represents a much narrower frequency range than that of Fig. 11. This is simply because the value of the modulation
parameter b̂s in Figs. 12 and 13 is smaller than the value of b̂pi corresponding to Figs. 10 and 11. Fig. 13(a) shows dominant
sidebands at orders Hm7nHs/c72 as well as Hm7nHs/c727n and Hm7nHs/c727N, besides the ones at Hm7N.

Similar to the previous two cases, a non-zero Er on the ring gear causes gear mesh force sideband orders at Hm7nHr/c.
The corresponding A(o) spectrum contains some additional sidebands at H=Hm7nHr/c7n. Again, figures for the case of ring
gear error are not included here since they are qualitatively similar to those for the sun and planet gear errors. Instead, FM
predictions for a case when Ep1=Es=Er=20mm (all other Epi=0 and epi=es=er=0) are included here with all of the corresponding
Fig. 12. Predicted (a) Fsp1(o) and (b) Frp1(o) spectra for the example planetary gear set when only FM are present due to sun gear run-out with

b̂s ¼ k̂s ¼ 3:0ð10Þ�5, iA[1,4], fb̂s1
¼ fk̂s1 ¼ p=2, fb̂s2

¼ fk̂s2 ¼ 0, fb̂s3
¼ fk̂s3 ¼ 3p=2 and fb̂s4

¼ fk̂s4 ¼ p.
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Fig. 13. Predicted A(o) spectrum for the example planetary gear set when only FM are present due to sun gear run-out with parameters specified in Fig.

12: (a) a zoomed in view in the vicinity of the fundamental gear mesh frequency and (b) the same spectrum with a wider frequency range.
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frequency modulation parameters specified above in addition to b̂r ¼ k̂r ¼ 2:0ð10Þ�5 (iA[1,4]), fb̂r1
¼ ft̂r1 ¼ 3p=2,

fb̂r2
¼ fk̂r2 ¼ 0, fb̂r3

¼ fk̂r3 ¼ p=2, and fb̂r4
¼ fk̂r4 ¼ p. The dynamic gear mesh force spectra corresponding to this case

are shown in Fig. 14, which are a linear superposition of the spectra for individual errors as nonlinear behavior such as
tooth separations are not in effect. The same can be said for A(o) shown in Fig. 15 as well. Here, all of the FM sideband
groups identified above for each individual error, Hm7Hp/c7n, Hm7Hr/c7n and Hm7Hs/c7n, coexist such that each
sideband can be related to a particular error since the values of Hp/c, Hs/c and Hr/c are distinct. It is also noted here that
sideband activity due to FM is richer and more complex than that of AM sources. It can also be stated that the FM sidebands
are very sensitive to parameters b̂ j and k̂j (j=s,r,p1,p2,y,pN), emphasizing the importance of determining their values
accurately from the actual gear errors Ej using quasi-static deformable-body gear contact models.
3.2. Planetary gear set modulations near a resonance

Most of the vibration spectra measured from planetary transmissions exhibit asymmetric sidebands around the gear
mesh orders. In Ref. [4], the rotation of the carrier was shown to be one of the sources of such asymmetric sidebands, unless
the gear set has equally-spaced and in-phase planets as the example planetary gear set considered in this study. In
agreement with this, the A(o) spectra presented in the previous section exhibited mostly symmetric sidebands. In this
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Fig. 14. Predicted (a) Fsp1(o) and (b) Frp1(o) spectra for the example planetary gear set when only FM are present due to planet-1, sun gear and ring gear

run-out errors. b̂r ¼ k̂r ¼ 2:0ð10Þ�5 (iA[1,4]), fb̂r1
¼ ft̂r1 ¼ 3p=2, fb̂r2

¼ fk̂r2 ¼ 0, fb̂r3
¼ fk̂r3 ¼ p=2, and fb̂r4

¼ fk̂r4 ¼ p and sun and planet related

parameters are as in Figs. 10 and 12.
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section, the sidebands of this example system will be predicted at a near-resonance region to demonstrate that dynamic
effects might be attributed to some of the asymmetric sidebands as well. The steady response here is still linear (no tooth
separations), partly because the damping values are not very low.

Using the same AM parameters as those used in Figs. 4 and 5 to correspond to the eccentricity of planet 1 only, the
dynamic response is predicted here at a gear mesh frequency of 950 Hz that is near the natural frequency at 982 Hz. Fig. 16
shows the predicted Fsp1(o) and Frp1(o) at Ts=500 N m. Here, the spectra that exhibit asymmetry about the gear mesh order
Hm=140, contrasting the symmetric spectra presented in Fig. 4 for the same system at a off-resonance condition. The right-
hand side sideband HmþHp/c=144.69 has a much larger amplitude than components at Hm and Hm�Hp/c since this order
coincides with the natural frequency at 982 Hz. Similarly, the A(o) spectrum shown in Fig. 17 is also asymmetric about Hm

for the same reason. This clearly indicates that dynamic conditions might be one of the reasons for asymmetry as well.
4. Experimental validation

These authors have recenly published a set of planetary gear set sideband modulation data collected through tightly-
controlled experiments [4]. In that study, the primary aim was to validate the predictions of the proposed simplied AM
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Fig. 15. Predicted A(o) spectrum for the example planetary gear set when only FM when only FM are present due to planet-1, sun gear and ring gear run-

out errors with parameters specified in Fig. 14: (a) a zoomed in view in the vicinity of the fundamental gear mesh frequency and (b) the same spectrum

with a wider frequency range.
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model due to carrier rotation. That model was able to describe only a subset of the measured sidebands, forming the
motivation for this study. An example measured acceleration spectrum from this earlier study will be compared with the
predictions of the proposed model to demonstrate the ability of the model in accounting for the gear manufacturing errors.

The planetary gear set used in the experiments had four unequally spaced planets (N=4 with ci=0, 90.9091, 1801 and
270.9091). For this gear set with Zr=125, Zs=73 and Zp=26, an arbitrary planet phasing existed (Zrci=0, 1.1325p, p and
0.1312p) such that it falls into the case (v) category in Ref. [4]. Details of the experimental set up and the experimental
procedure are not included here as they can be found in Ref. [4].

Fig. 18 shows an example measured acceleration spectrum collected when this gear set was operating at Ts=400 N m and
os=500 rev/min. The sidebands of this spectrum at integer orders can be attributed to the amplitude modulations due to
the carrier rotation. However, the sidebands appearing at orders such as 116.19, 118.19, 119.19 and 126.81 can be thought of
as a direct result of certain gear manufacturing errors. These orders are associated with the planet run-out errors. The
proposed model is used to simulate this gear set at the same operating condition with the AM and FM parameters
associated with the run-out error of a planet gear (Ep1=20mm, ep1=0). Firstly, the AM parameters corresponding to this
planet gear run-out error are predicted to be bp1=0.0342, fbp1=3p/2, Wp1=0.0335, fWp1=p/2, kp1=0.0552, fkp1=3p/2,
tp1=0.0496 and ftp1=p/2 [26]. Predicted A(o) spectrum is shown in Fig. 19(a) generates the measured sidebands at orders



ARTICLE IN PRESS

Fig. 16. Predicted (a) Fsp1(o) and (b) Frp1(o) spectra for the example planetary gear set under the influence of AM due to planet-1 run-out error with

bp1=0.034, fbp1=3p/2, Wp1=0.033, fWp1=p/2, kp1=0.055, fkp1=3p/2, tp1=0.049, ftp1=p/2 and om=151.2 rad/s.
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such as 116.19, 118.19, 119.19 and 126.81 (each at Hm7Hp/c7n) in addition to even integer orders such as 120, 122 and 124
caused by the carrier rotation. Secondly, the same analysis is repeated with the corresponding FM parameters only
(b̂p1 ¼ Ŵp1 ¼ k̂p1 ¼ t̂p1 ¼ 1:0ð10Þ�4, fb̂p1

¼ fk̂p1 ¼ 3p=2 and fŴp1
¼ ft̂p1 ¼ p=2) to produce the spectrum shown in Fig.

19(b). In this spectrum, large sideband amplitudes are evident at odd integer orders, especially at orders 123 and 127.
Finally, the predicted acceleration spectrum presented in Fig. 19(c) is due to both AM and FM effects of the planet run-out
error. Comparison of Fig. 19(c) to (18a) and (18b) indicates clearly that almost all of the sidebands observed in the measured
spectrum are indeed predicted by the model. It further shows that the model’s capability in including the gear
manufacturing errors is sound. With this, it can be stated that the proposed model can be used to study sideband behavior
of planetary gear sets with or without manufacturing errors in both resonance and off-resonance regions of operation.
5. Conclusions

A dynamic model was developed to predict modulation sidebands of planetary gear sets due to gear manufacturing
errors in the forms of run-out or eccentricity, as well as change of the instantaneous gear mesh locations relative to a fixed
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Fig. 17. Predicted A(o) spectrum for the example planetary gear set under the influence of AM due to planet-1 run-out error with parameters specified in

Fig. 16.

Fig. 18. A measured A(o) spectrum from a 4-planet planetary gear set at Ts=400 N m and os=500 rev/min.
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measurement location due to the rotation of the planetary carrier. The dynamic model included periodically time-varying
gear mesh stiffnesses and any nonlinearities associated with tooth separations. The mesh-frequency excitations were
derived in their amplitude and frequency modulated forms. The resultant dynamic gear mesh force spectra were shown to
contain sidebands due to these errors. These modulated dynamic gear mesh force spectra were then used in the simplified
analytical formulation of Ref. [4] to include the changes caused by the rotation of the carrier. Predicted acceleration spectra
were shown to contain three well-defined groups of sidebands Hm7Hp/c7n, Hm7Hr/c7n and Hm7Hs/c7n (n=integer) due
to amplitude modulations associated with the errors of the planets, the ring gear and the sun gear, respectively, while the
frequency modulations resulted in more complex sideband structures within wider frequency bands around the
fundamental gear mesh frequency. At the end, comparisons to a measured planetary acceleration spectrum were provided
to demonstrate that the proposed mechanisms are capable of describing the measured sideband behavior.
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Fig. 19. Predicted A(o) spectrum the same gear set as in Fig. 18 with (a) AM only, (b) FM only and (c) both AM and FM.
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